

## Functional Constipation and Associated Risk Factors in the Elderly Patients Attending the General Outpatient Clinic of Federal Medical Centre, Abeokuta, Ogun State, Nigeria.

Oluwafemi Joachim Ajayi<sup>1</sup>, Peter Taiwo Sogunle<sup>1</sup>, Sunday Olukayode Malomo<sup>1</sup>, Meeden Ige<sup>1</sup>, Wasiu Adebiyi<sup>1</sup>, Bolatito Betty Fatunsi<sup>1</sup>

*1. Department of Family Medicine. Federal Medical Centre, Abeokuta*

### Corresponding Author

Name: Ajayi OJ

Department of family medicine, Federal Medical Centre, Abeokuta

### Abstract

**Background:** Functional constipation (FC), defined as a stool frequency of less than 3 times per week and persisting for at least 3 months, is a common concern in family medicine. Data on FC and its risk factors in elderly Nigerians are limited. This study aimed to determine the prevalence and risk factors of FC among elderly patients at a family medicine clinic in Abeokuta, Nigeria.

**Methods:** A hospital-based cross-sectional study was conducted among 316 elderly patients ( $\geq 60$  years) attending the family medicine clinic of the Federal Medical Centre, Abeokuta, using systematic random sampling. Data were collected via an interviewer-administered questionnaire. FC was the dependent variable, and socio-demographic factors, lifestyle, and medical history were independent variables. Chi-square tests and logistic regression were used for analysis, with significance set at  $p < 0.05$  (95% CI).

**Results:** The prevalence of FC was 19.3%. The mean age of participants was  $68.77 \pm 6.76$  years. While females were the majority (57.3%), a higher proportion of males had FC (22.2% vs. 17.1%). Logistic regression identified ethnicity (Yoruba: OR 2.348,  $p = 0.014$ ; Hausa: OR 5.586,  $p = 0.043$ ) and lack of fruit (OR 2.672,  $p = 0.043$ ) and vegetable (OR 2.679,  $p = 0.012$ ) consumption as significant predictors of FC.

**Conclusion:** The prevalence of FC was notable, with higher rates in males and significant associations with Yoruba and Hausa ethnicities, and lower intake of fruits and vegetables. These findings suggest the need for targeted dietary interventions and culturally sensitive management strategies for FC in this elderly Nigerian population.

**Keywords:** Functional constipation, Elderly, Prevalence, Risk factors

**Introduction:** Constipation is a significant clinical symptom, broadly categorized as secondary (due to underlying conditions) and functional (FC), where no specific cause is identified<sup>1</sup>. Functional constipation is considerably more prevalent. Globally, FC is a common reason for consultation in family medicine, likely due to its negative impact on patients' quality of life. What constitutes "normal" bowel habits varies across populations due to factors like gut transit time and dietary practices. FC is typically defined as a stool frequency of less than three times per week and is considered chronic if symptoms persist for at least three months. Patients may also report hard stools, incomplete evacuation, abdominal discomfort, and other symptoms indicative of defecatory disorders<sup>2,3</sup>.

The reported prevalence of FC in the general population in Western countries ranges widely from 2% to 27%<sup>4</sup>. Systematic reviews and meta-analyses indicate varying prevalence across different regions, with estimates ranging from 11% in Southeast Asia to 18% in South America<sup>5,6</sup>. Within the Asian community, prevalence ranges from 11% to 23%, with a noted increase in recent years<sup>6</sup>. A hospital-based study in Egypt reported a prevalence of 24.8%<sup>7</sup>, while a community-based study in southwestern Nigeria found a much lower rate of 1%<sup>8</sup>. Several risk factors have been

associated with FC, including dietary and cultural factors, female sex, older age, low socioeconomic status, physical inactivity, and insufficient fluid and fibre intake<sup>7,9,10</sup>.

The World Health Organization defines elderly individuals as those aged 65 years or older<sup>11</sup>, while the United Nations uses a cut-off of 60 years, which this study adopts<sup>12</sup>. While previous research has explored constipation in adolescents and adults in Nigeria<sup>13,14</sup>, studies specifically focusing on the elderly population using the Rome IV criteria in a hospital setting are limited. Furthermore, prior studies in the Nigerian context may not have consistently accounted for medication histories or excluded potential secondary causes through digital rectal examinations.

The burden of FC in the elderly in West Africa appears to vary, potentially due to differences in study populations, diagnostic criteria, data collection methods, and sampling. FC can negatively impact the quality of life in older adults, potentially leading to lower urinary tract symptoms, faecal impaction, and, rarely, colonic perforation<sup>15</sup>. It can also be a sign of underlying neurological or endocrine conditions.

This study aimed to address the gap in knowledge by determining the prevalence and associated risk factors of functional constipation among elderly patients attending the General Outpatient Clinic (GOPC) of the Federal Medical

Centre (FMC), Abeokuta, Ogun State. The findings of this study are relevant to family medicine practice by highlighting the burden of FC in the elderly in a Nigerian hospital setting, which can inform targeted interventions and management strategies.

The primary aim of this study was to determine the prevalence and risk factors for functional constipation among elderly patients attending the GOPC at FMC, Abeokuta, to inform strategies for modifying lifestyle risk factors and reducing the burden of FC.

## Methods

This hospital-based cross-sectional study was conducted at the General Outpatient Clinic (GOPC) of the Federal Medical Centre (FMC), Abeokuta, Ogun State, Nigeria. The study population comprised elderly patients aged 60 years and above attending the GOPC.

A systematic random sampling technique was used to recruit 316 participants. The sample size was calculated using the Leslie Kish formula, based on a previous prevalence of 24.8%, a 95% confidence level, and a 5% precision, with a 10% attrition allowance. The sampling interval was approximately 2, and the first participant was selected randomly from the first three eligible patients, followed by every second consenting patient.

Data were collected using an interviewer-administered questionnaire, which was pre-tested on a similar population for clarity and necessary adjustments were made. The questionnaire included sections on socio-demographic characteristics, the Bristol Stool Form Scale (BSFS), the Rome IV diagnostic criteria for functional constipation (FC), lifestyle factors (dietary intake of fruits and vegetables, water intake, physical activity, alcohol intake, and smoking), medical history, and physical examination (weight, height for BMI calculation, and digital rectal examination to exclude secondary causes). FC was defined based on the Rome IV criteria. Patients with clinical features of secondary constipation or who were too ill to participate were excluded. Weight and height were measured using standardized procedures, and BMI was calculated and categorized according to WHO guidelines.

Data were analyzed using IBM SPSS Statistics for window, version 22.0<sup>15</sup>. Descriptive statistics (frequencies, percentages, means, and standard deviations) were used to summarize the data. Chi-square tests and Fisher's exact tests were employed to assess the association between FC (dependent variable) and independent variables (socio-demographic, lifestyle, and clinical factors). Logistic regression was used to identify independent predictors of FC. The level of significance was set at  $p < 0.05$  with a 95% confidence interval.

Ethical approval was obtained from the ethical committee of the Federal Medical Centre, Abeokuta. Informed consent was

obtained from all participants before data collection, ensuring confidentiality and the right to withdraw from the study at any time.

## Results

**Socio-Demographic Characteristics:** As shown in Table 1, The 316 elderly participants had a mean age of  $68.77 \pm 6.76$  years, with the largest group being 60-64 years old (n=101,32%) and the smallest being  $\geq 85$  years (n=8,2.5%). There were more females (n=181,57.3%) than males (n=135,42.7%), with a female-to-male ratio of 1.3:1. The majority were married (n=168,53.2%) and Christian (n=208,65.8%). The predominant ethnicity was Yoruba (n=291,92.1%). Regarding education, the largest proportion had primary education (n=106,33.5%), followed by tertiary education (n=86,27.2%). Retirees formed the largest occupational group (n=127,40.2%). The mean monthly income was ₦53,617.36 $\pm$ 84,591.65, with over half (n=179,56.6%) earning less than ₦35,000.

**Table 1: Socio-demographic Characteristics of Study Participants**

| Socio-demographic Variable | Categories    | n (316)          |
|----------------------------|---------------|------------------|
| Age                        |               |                  |
|                            | 60 – 64       | 101 (32.0)       |
|                            | 65 – 69       | 88 (27.8)        |
|                            | 70 – 74       | 59 (18.8)        |
|                            | 75 – 79       | 39 (12.3)        |
|                            | 80 – 84       | 21 (6.6)         |
|                            | $\geq 85$     | 8 (2.5)          |
| $\bar{x} \pm SD$           |               | $68.77 \pm 6.76$ |
| Gender                     |               |                  |
|                            | Male          | 135 (42.7)       |
|                            | Female        | 181 (57.3)       |
| Marital Status             |               |                  |
|                            | Single        | 2 (0.6)          |
|                            | Married       | 168 (53.2)       |
|                            | Separated     | 28 (8.9)         |
|                            | Divorced      | 1 (0.3)          |
|                            | Widowed       | 117 (37.0)       |
| Religion                   |               |                  |
|                            | Christianity  | 208 (65.8)       |
|                            | Islam         | 105 (33.3)       |
|                            | Traditional   | 2 (0.6)          |
|                            | Others        | 1 (0.3)          |
| Ethnic Group               |               |                  |
|                            | Yoruba        | 291 (92.1)       |
|                            | Igbo          | 14 (4.4)         |
|                            | Hausa         | 2 (0.6)          |
|                            | Others        | 9 (2.)           |
| Highest Level of Education |               |                  |
|                            | None          | 59 (18.7)        |
|                            | Primary       | 106 (33.5)       |
|                            | Secondary     | 65 (20.6)        |
|                            | Tertiary      | 86 (27.2)        |
| Occupation                 |               |                  |
|                            | Civil Servant | 22 (7.0)         |
|                            | Trader        | 100 (31.6)       |
|                            | Artisan       | 56 (17.7)        |
|                            | Others        | 138 (43.7)       |

| Average Monthly Income |                      |  |
|------------------------|----------------------|--|
| <₦35000                | 179 (56.6)           |  |
| ₦35000 – ₦100000       | 83 (26.3)            |  |
| ₦100000 – ₦200000      | 35 (11.1)            |  |
| ≥₦200000               | 19 (6.0)             |  |
| $\bar{x} \pm SD$       | ₦53617.36 ± 84591.65 |  |

**Clinical Characteristics:** As shown in Table 2, the average weight of the participants was  $67.80 \pm 15.50$  kg, and the average height was  $1.61 \pm 0.09$  m. The mean Body Mass Index (BMI) was  $26.16 \pm 5.59$  kg/m<sup>2</sup>. The BMI distribution showed that the largest group had a normal weight (n=118, 37.3%), followed by overweight (n=100, 31.7%) and obese (n=80, 25.3%) individuals. The smallest group was underweight (n=18, 5.7%).

Table 2: Clinical Characteristics of Study Participants

| Lifestyle Characteristics Variable | $\bar{x} \pm SD$  | n (316)    |
|------------------------------------|-------------------|------------|
| Weight (kg)                        | $67.80 \pm 15.50$ |            |
| Height (m)                         | $1.61 \pm 0.09$   |            |
| BMI (kg/m <sup>2</sup> )           | $26.16 \pm 5.59$  |            |
| < 18.5                             |                   | 18 (5.7)   |
| 18.5 – 24.9                        |                   | 118 (37.3) |
| 25.0 – 29.9                        |                   | 100 (31.6) |
| ≥ 30.0                             |                   | 80 (25.3)  |

**Lifestyle Characteristics:** As shown in Table 3, approximately half of the participants reported never drinking alcohol (n=160, 50.6%), while 13.6% (n=43) were current drinkers. The majority had never smoked (n=266, 84.2%), with only 1.27% (n=4) currently smoking. A large proportion engaged in some form of exercise (n=223, 70.6%), but only 28.2% (n=89) reported adequate exercise. Fast walking was the most common type of exercise (n=175, 55.4%). A high percentage reported regular consumption of fruits (n=274, 86.7%) and vegetables (n=306, 96.8%), but only a very small number (n=1, 0.3% for each) reported adequate consumption. Regarding water intake, 9.6% of males (n=13) and 32.0% of females (n=58) reported adequate intake.

Table 3: Lifestyle Characteristics of Study Participants

| Lifestyle Characteristics Variable | Categories             | n (316)    |
|------------------------------------|------------------------|------------|
| Alcohol Consumption                |                        |            |
|                                    | Never Drank            | 160 (50.6) |
|                                    | Stopped ≤ 6 Months Ago | 113 (35.8) |
|                                    | Currently Drinking     | 35 (11.1)  |
|                                    | Drinks Occasionally    | 8 (2.5)    |
| Smoking Practice                   |                        |            |
|                                    | Never Smoked           | 266 (84.2) |
|                                    | Stopped ≥ 6 Months Ago | 46 (14.6)  |
|                                    | Currently Smoking      | 2 (0.6)    |
|                                    | Smokes Occasionally    | 2 (0.6)    |
| Exercise                           |                        |            |
|                                    | Yes                    | 223 (70.5) |
|                                    | No                     | 93 (29.5)  |
| If Yes, Type of Exercise           |                        |            |
|                                    | None                   | 93 (29.4)  |
|                                    | Cycling                | 3 (0.9)    |
|                                    | Jogging                | 10 (3.2)   |
|                                    | Swimming               | 1 (0.3)    |
|                                    | Soccer                 | 1 (0.3)    |
|                                    | Walking Fast           | 175 (55.4) |
|                                    | Others                 | 33 (10.4)  |

|                                   |            |            |
|-----------------------------------|------------|------------|
| Adequacy of Exercise              | Adequate   | 89 (28.2)  |
|                                   | Inadequate | 227 (71.8) |
| Fruit Consumption                 | Yes        | 274 (86.7) |
|                                   | No         | 42 (13.3)  |
| Adequacy of Fruit Consumption     | Adequate   | 1 (0.3)    |
|                                   | Inadequate | 315 (99.7) |
| Vegetable Consumption             | Yes        | 306 (96.8) |
|                                   | No         | 10 (3.2)   |
| Adequacy of Vegetable Consumption | Adequate   | 1 (0.3)    |
|                                   | Inadequate | 315 (99.7) |

### Stool Types in Participants:

Based on the Bristol Stool Form Scale, the majority of participants (70.9%) reported having normal stool types. Hard stools were reported by 26.9% of the participants, while watery stools were the least common, reported by 2.2%.

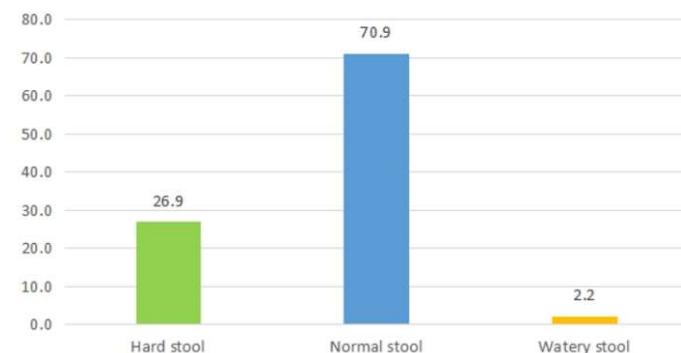



Figure 1: Stool types of participants

### Types of Stool and Functional Constipation Status: (Figure 2)

Among participants with functional constipation (FC), 32.8% reported having hard stools, compared to only 8.8% of those without FC who reported hard stools. The majority of participants without FC (39.8%) reported normal stools, which was higher than the proportion of those with FC who reported normal stools (17.2%). A small percentage of participants without FC reported watery stools (1.4%).

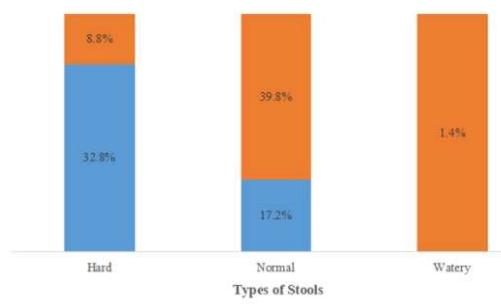



Fig 2: Types of Stools and Functional Constipation Status of the Participants

### Prevalence of Functional Constipation:

The prevalence of functional constipation (FC) among the study participants was 19.3% (n=61). The majority of participants (80.7%, n=255) did not have FC.

### Relationship between functional constipation (FC) and socio-demographic characteristics:

The relationship between functional constipation (FC) and

socio-demographic characteristics was examined in Table 4. The analysis revealed that age had no significant association with FC ( $\chi^2=1.297$ ,  $p=0.935$ ), with prevalence ranging from 15.4% among individuals aged 75–79 years to 25.0% among those aged 85 years and above. Gender differences were also not statistically significant ( $\chi^2=1.289$ ,  $p=0.256$ ), although males (22.2%) reported a slightly higher prevalence than females (17.1%).

Similarly, marital status showed no significant relationship with FC ( $\chi^2=0.830$ ,  $p=0.934$ ); married individuals had a prevalence of 19.6%, while no cases were recorded among single or divorced participants. Religion was not significantly associated with FC ( $\chi^2=5.880$ ,  $p=0.118$ ), though Muslims (21.0%) exhibited a marginally higher prevalence compared to Christians (17.8%).

Ethnicity, however, demonstrated a statistically significant association with FC ( $\chi^2=7.872$ ,  $p=0.049$ ). The Yoruba ethnic group, which was predominant in the study population, had a prevalence of 17.5%. Educational level was not significantly related to FC ( $\chi^2=3.418$ ,  $p=0.332$ ), although the highest prevalence (25.4%) was observed among participants with no formal education. Occupational status also showed no significant relationship ( $\chi^2=3.111$ ,  $p=0.375$ ), with artisans having the highest prevalence (28.3%). Likewise, income level was not significantly associated with FC ( $\chi^2=1.551$ ,  $p=0.670$ ), as those earning less than ₦35,000 per month had a prevalence of 21.2%.

In summary, ethnicity was the only socio-demographic factor found to have a statistically significant association with functional constipation in this study.

**Table 4: The Relationship between Participants' Socio-demographic Characteristics and Functional Constipation**

| Socio-demographic Characteristics | Functional Constipation Test |            |          |         |
|-----------------------------------|------------------------------|------------|----------|---------|
|                                   | Yes                          |            | No       |         |
|                                   | n (%)                        | n (%)      | $\chi^2$ | P-value |
| Age                               |                              |            |          |         |
| 60 – 64                           | 21 (34.4)                    | 80 (31.4)  |          |         |
| 65 – 69                           | 15 (24.6)                    | 73 (28.6)  |          |         |
| 70 – 74                           | 12 (19.7)                    | 47 (18.4)  |          |         |
| 75 – 79                           | 6 (9.8)                      | 33 (12.9)  |          |         |
| 80 – 84                           | 5 (8.2)                      | 16 (6.3)   |          |         |
| ≥ 85                              | 2 (3.3)                      | 6 (2.4)    |          |         |
| $\bar{x} \pm SD$                  | 68.16±7.82                   | 68.68±6.49 |          |         |
| Gender                            |                              |            |          |         |
| Male                              | 30 (49.2)                    | 105 (41.2) |          |         |
| Female                            | 31 (50.8)                    | 150 (58.8) |          |         |
| Marital Status                    |                              |            |          |         |
| Single                            | 0 (0.0)                      | 2 (0.8)    |          |         |
| Married                           | 33 (54.1)                    | 135 (52.9) |          |         |
| Separated                         | 6 (9.8)                      | 22 (8.6)   |          |         |
| Divorced                          | 0 (0.0)                      | 1 (0.4)    |          |         |
| Widowed                           | 22 (36.1)                    | 95 (37.3)  |          |         |
| Religion                          |                              |            |          |         |
| Christianity                      | 37 (60.7)                    | 171 (67.1) |          |         |
| Islam                             | 22 (36.1)                    | 83 (32.5)  |          |         |
| Traditional                       | 1 (1.6)                      | 1 (0.4)    |          |         |
| Others                            | 1 (1.6)                      | 0 (0.0)    |          |         |
| Ethnic Group                      |                              |            |          |         |
| Yoruba                            | 51 (83.6)                    | 240 (94.1) |          |         |
| Igbo                              | 5 (8.2)                      | 9 (3.5)    |          |         |
| Hausa                             | 1 (1.6)                      | 1 (0.4)    |          |         |
| Others                            | 4 (6.6)                      | 5 (2.0)    |          |         |

|                            |                    |                    |       |       |
|----------------------------|--------------------|--------------------|-------|-------|
| Highest Level of Education |                    |                    | 3.418 | 0.332 |
| None                       | 15 (24.6)          | 44 (17.3)          |       |       |
| Primary                    | 23 (37.7)          | 83 (32.5)          |       |       |
| Secondary                  | 10 (16.4)          | 55 (21.6)          |       |       |
| Tertiary                   | 13 (21.3)          | 73 (28.6)          |       |       |
| Occupation                 |                    |                    | 3.111 | 0.375 |
| Civil Servant              | 6 (9.8)            | 16 (6.3)           |       |       |
| Trader                     | 21 (34.4)          | 79 (31.0)          |       |       |
| Artisan                    | 13 (21.3)          | 43 (16.9)          |       |       |
| Others                     | 21 (34.4)          | 117 (45.9)         |       |       |
| Average Monthly Income     |                    |                    |       |       |
| $\bar{x} \pm SD$           | ₦43754.10±56125.06 | ₦55976.81±90006.67 | 1.551 | 0.670 |
| <₦35000                    | 38 (62.3)          | 141 (55.3)         |       |       |
| ₦35000 – ₦100000           | 15 (24.6)          | 68 (26.7)          |       |       |
| ₦100000 – ₦200000          | 6 (9.8)            | 29 (11.4)          |       |       |
| ≥₦200000                   | 2 (3.3)            | 17 (6.7)           |       |       |

\*\*\*Significance

### Relationship between Functional Constipation and Clinical Characteristics:

It is shown in Table 5 that the weight, height, and BMI distribution does not differ significantly with functional constipation [(p-value = 0.630, Chi-square = 0.233), (p-value = 0.247, Chi-square = 1.343) and (p-value = 0.542, Chi-square = 2.147) respectively].

**Table 5: The Relationship between Functional Constipation and Clinical Characteristics.**

| Clinical Characteristics | Functional Constipation Test |               |                    |         |
|--------------------------|------------------------------|---------------|--------------------|---------|
|                          | Yes                          |               | No                 |         |
|                          | n=61 (19.3%)                 | n=255 (80.7%) | Test Statistic     | p-value |
| Weight (Kg)              | 68.66±14.71                  | 67.59±15.70   | 0.233 <sup>t</sup> | 0.630   |
| Height (cm)              | 162.39±11.11                 | 160.84±8.95   | 1.343 <sup>t</sup> | 0.247   |
| BMI (Kg/m <sup>2</sup> ) | 26.08±5.03                   | 26.18±5.72    | 0.016 <sup>t</sup> | 0.898   |
| <18.5                    | 3 (16.7)                     | 15 (83.3)     | 2.147 <sup>f</sup> | 0.542   |
| 18.5–24.9                | 21 (17.8)                    | 97 (82.2)     |                    |         |
| 25.0–29.9                | 24 (24.0)                    | 76 (76.0)     |                    |         |
| ≥30.0                    | 13 (16.3)                    | 67 (83.8)     |                    |         |

t= Student's T-test, f= Fisher's exact

### Relationship between Functional Constipation and Lifestyle Characteristics:

Table 6 explored the relationship between functional constipation (FC) and various lifestyle factors. The analysis revealed no significant association between FC and alcohol consumption ( $\chi^2=2.627$ ,  $p=0.453$ ), smoking ( $\chi^2=3.317$ ,  $p=0.345$ ), or exercise ( $\chi^2=2.291$ ,  $p=0.130$ ).

However, dietary habits showed significant associations with FC. Fruit consumption was notably related to constipation ( $\chi^2=12.937$ ,  $p=0.002$ ), as individuals who did not consume fruits had a much higher prevalence of FC (40.0%) compared to those who did (16.4%). Similarly, vegetable consumption demonstrated a significant association ( $\chi^2=13.547$ ,  $p=0.001$ ), with a markedly higher prevalence among participants who did not consume vegetables (66.7%) compared to those who did (18.0%).

Water intake, on the other hand, showed no significant association with FC for either males ( $\chi^2=0.389$ ,  $p=0.533$ ) or females ( $\chi^2=2.766$ ,  $p=0.096$ ).

In summary, inadequate consumption of fruits and vegetables was significantly associated with a higher prevalence of functional constipation, highlighting the importance of dietary fiber in bowel health.

**Table 6: The Relationship between Functional Constipation and Lifestyle Characteristics**

| Lifestyle Characteristics         | Functional Constipation Test |                       | Test Statistic      | P-value  |
|-----------------------------------|------------------------------|-----------------------|---------------------|----------|
|                                   | Yes<br>n = 61 (19.3%)        | No<br>n = 255 (80.7%) |                     |          |
| Alcohol Consumption               |                              |                       | 2.627 <sup>c</sup>  | 0.453    |
| Never Drank                       | 30 (18.8)                    | 130 (81.3)            |                     |          |
| Previously Drank                  | 25 (22.1)                    | 88 (77.9)             |                     |          |
| Current Drinkers                  | 6 (13.9)                     | 37 (86.1)             |                     |          |
| Smoking Practice                  |                              |                       | 3.317 <sup>f</sup>  | 0.345    |
| Never Smoked                      | 48 (18.0)                    | 218 (82.0)            |                     |          |
| Previously Smoked                 | 12 (26.1)                    | 34 (73.9)             |                     |          |
| Current Smokers                   | 1 (25.0)                     | 3 (75.0)              |                     |          |
| Exercise                          |                              |                       | 2.291 <sup>c</sup>  | 0.130    |
| Yes                               | 38 (17.1)                    | 185 (82.9)            |                     |          |
| No                                | 23 (24.7)                    | 70 (75.3)             |                     |          |
| Type of Exercise                  |                              |                       | 7.256 <sup>f</sup>  | 0.298    |
| None                              | 23 (24.7)                    | 70 (75.3)             |                     |          |
| Cycling                           | 0 (0.0)                      | 3 (100)               |                     |          |
| Jogging                           | 3 (30.0)                     | 7 (70.0)              |                     |          |
| Swimming                          | 0 (0.0)                      | 1 (100.0)             |                     |          |
| Soccer                            | 0 (0.0)                      | 1 (100.0)             |                     |          |
| Walking Fast                      | 26 (14.9)                    | 149 (85.1)            |                     |          |
| Others                            | 9 (27.3)                     | 24 (72.7)             |                     |          |
| Adequacy of Exercise              |                              |                       | 0.477 <sup>c</sup>  | 0.490    |
| Yes                               | 15 (16.9)                    | 74 (83.1)             |                     |          |
| No                                | 46 (20.3)                    | 181 (79.7)            |                     |          |
| Fruit Consumption                 |                              |                       | 12.937 <sup>c</sup> | 0.002*** |
| Yes                               | 45 (16.4)                    | 229 (83.6)            |                     |          |
| No                                | 16 (40.0)                    | 26 (60.0)             |                     |          |
| Adequacy of Fruit Consumption     |                              |                       | 0.240 <sup>f</sup>  | 0.624    |
| Adequate                          | 0 (0.0)                      | 1 (100.0)             |                     |          |
| Inadequate                        | 61 (19.4)                    | 254 (80.6)            |                     |          |
| Vegetable Consumption             |                              |                       | 13.547 <sup>f</sup> | 0.001*** |
| Yes                               | 55 (18.0)                    | 251 (82.0)            |                     |          |
| No                                | 6 (66.7)                     | 4 (33.3)              |                     |          |
| Adequacy of Vegetable Consumption |                              |                       | 0.240 <sup>f</sup>  | 0.624    |
| Adequate                          | 0 (0.0)                      | 1 (100.0)             |                     |          |
| Inadequate                        | 61 (19.4)                    | 254 (80.6)            |                     |          |
| Adequacy of Water Intake (Male)   |                              |                       | 0.389 <sup>f</sup>  | 0.533    |
| Adequate                          | 2 (15.4)                     | 11 (84.6)             |                     |          |
| Inadequate                        | 28 (23.0)                    | 94 (77.0)             |                     |          |
| Adequacy of Water Intake (Female) |                              |                       | 2.766 <sup>c</sup>  | 0.096    |
| Adequate                          | 6 (10.3)                     | 52 (89.7)             |                     |          |
| Inadequate                        | 25 (20.3)                    | 98 (79.7)             |                     |          |

\*\*\*Significance, c = chi-square, f = Fisher's exact, t = Student's T-test

### Logistic Regression Analysis for Independent Predictors of Functional Constipation:

The variables that were found to be statistically significant ( $p<0.05$ ) in the earlier inferential statistical analysis using chi square were selected for logistic regressions analysis.

Table 7 presented the findings from the logistic regression analysis conducted to identify independent predictors of functional constipation (FC). The results showed that ethnicity and dietary habits were significant factors influencing the likelihood of developing FC.

With respect to ethnicity, being Yoruba was identified as an independent predictor of FC, with an odds ratio (OR) of 2.348 ( $p=0.014$ , CI = 1.086–3.897), indicating that individuals of Yoruba ethnicity were approximately 2.3 times more likely to develop FC compared to other ethnic groups. Similarly, being Hausa was also found to be an independent predictor (OR = 5.586,  $p=0.043$ , CI = 2.679–11.374), suggesting that members of the Hausa ethnic group were about 5.6 times more likely to experience FC than those from other ethnic backgrounds. In contrast, being Igbo was not identified as an independent predictor ( $p=0.395$ ).

Dietary factors also emerged as significant predictors. Individuals who did not consume fruits were about 2.7 times more likely to develop FC than those who did (OR = 2.672,  $p=0.043$ , CI = 1.267–6.776). Likewise, not consuming vegetables independently increased the likelihood of FC (OR = 2.679,  $p=0.012$ , CI = 1.631–9.374), indicating that inadequate intake of vegetables substantially contributed to the risk of developing functional constipation.

In summary, the logistic regression analysis revealed that ethnicity (particularly Yoruba and Hausa) and low consumption of fruits and vegetables were significant independent predictors of functional constipation in the study population.

**Table 7: Logistic Regression Analysis for Independent Predictors of Functional Constipation**

| VARIABLE              | P-value  | Odds Ratio | 95% C.I. for OR |        |
|-----------------------|----------|------------|-----------------|--------|
|                       |          |            | Lower           | Upper  |
| Ethnic Group          |          |            |                 |        |
| Others                |          | Ref        |                 |        |
| Yoruba                | 0.014*** | 2.348      |                 |        |
| Igbo                  | 0.395    | 5.291      | 1.086           | 3.897  |
| Hausa                 | 0.043*** | 5.586      | 3.725           | 8.753  |
| Fruit Consumption     |          |            |                 |        |
| Yes                   |          | Ref        | 2.679           | 11.374 |
| No                    | 0.043*** | 2.672      |                 |        |
| Vegetable Consumption |          |            |                 |        |
| Yes                   |          | Ref        | 1.267           | 6.776  |
| No                    | 0.012*** | 2.679      |                 |        |

\*\*\*Significance

### Discussion

This study determined the prevalence of functional constipation (FC) among elderly patients at a Nigerian outpatient clinic and identified associated socio-demographic, clinical, and lifestyle factors. The predominant age group (60–64 years) and mean age were consistent with other FC studies in the elderly<sup>1718</sup>. The slightly lower mean age than that reported in a Spanish study<sup>19</sup> highlights the need for targeted interventions for this age group. The higher proportion of females aligns with some studies<sup>8</sup>, possibly reflecting differences in health-seeking behavior.

The majority of participants were married, similar to findings in Egypt<sup>7</sup> and Bangladesh<sup>20</sup>. The predominance of Christians

and Yoruba participants reflects the study's geographical setting<sup>21 22</sup>. The occupational profile (mostly retirees) and income levels were also consistent with findings from other studies on elderly populations<sup>7</sup>. The 19.3% prevalence of FC observed in this study is comparable to the global average<sup>23</sup>. Variations from other Nigerian<sup>8 14</sup> and international studies<sup>7 24</sup> may be due to differences in study populations, settings, and diagnostic criteria.

The absence of a significant association between FC and age contrasts with findings from some studies<sup>9 7</sup> but agrees with others<sup>17</sup>. Similarly, the non-significant relationship between gender and FC aligns with some reports<sup>7 25</sup> but differs from others<sup>9</sup>. Marital status, occupation, and education level also showed no significant association with FC, consistent with previous research<sup>18, 25</sup>. The significant association observed with ethnicity, particularly the higher prevalence among the Yoruba group, suggests possible cultural or dietary influences<sup>7 26</sup>. This finding supports the known impact of differing dietary patterns on gastrointestinal health.

The lack of association between body mass index (BMI) and FC is in agreement with earlier findings<sup>7</sup>. However, the significant relationship between low fruit and vegetable consumption and FC supports previous evidence linking dietary fiber intake to bowel regularity<sup>7 9 28</sup>. The non-significant association between water intake and FC contrasts with certain studies<sup>29,30</sup> but is consistent with others<sup>31</sup>, possibly due to the limitations of self-reported data<sup>32</sup>.

The logistic regression analysis further identified Yoruba and Hausa ethnicities, along with inadequate fruit<sup>7</sup> and vegetable<sup>7</sup> consumption, as independent predictors of FC. The lack of association for the Igbo group may warrant further investigation into regional dietary patterns. The strong predictive value of low fruit and vegetable intake reinforces the well-established link between dietary fiber deficiency and constipation<sup>33 34</sup>.

In conclusion, FC is prevalent among elderly Nigerians, with ethnicity and inadequate fruit and vegetable consumption emerging as significant independent predictors. These findings underscore the need for culturally sensitive, diet-based interventions to reduce the burden of functional constipation in this population.

### **Study limitations:**

The cross-sectional design limits causality. Reliance on self-reported data introduces potential recall bias. Being a single-center study may limit the generalizability of the findings.

### **Conclusion and Recommendations:**

Functional constipation prevalence was 19.3% among elderly attendees. Ethnicity (Yoruba and Hausa) and inadequate fruit and vegetable intake were independent predictors. We

recommend routine screening for FC in the elderly and education on dietary predictors. Given the high rates of overweight/obesity and inadequate exercise, lifestyle counseling for healthy weight and regular, adequate exercise is also advised.

### **Authors Contributions**

All authors participated in the conduct of the study and wrote up the article with permissible and recommended variability.

1. Longstreth GF, Thompson WG, Chey WD, et al. Functional bowel disorders. *Gastroenterology*. 2006; 130:1480-91. DOI: 10.1053/j.gastro.2005.11.061
2. Suares NC, Ford AC. Prevalence of, and risk factors for, chronic idiopathic constipation in the community: systematic review and meta-analysis. *Am J Gastroenterol*. 2011;106:1582-91. DOI: 10.1038/ajg.2011.164.
3. Lembo A, Camilleri M. Chronic constipation. *N Engl J Med*. 2003;349:1360-8. DOI:10.1056/NEJMra020995.
4. Osonuga IO, Osonuga A, Osonuga AA, et al. Prevalence of functional constipation in a rural community in southwestern Nigeria. *J Community Med Prim Health Care*. 2014;26:16-21.
5. Chu H, Zhong L, Li H, et al. Epidemiology characteristics of constipation for general population, pediatric population, and elderly population in China. *Gastroenterol Res Pract*. 2014;2014:532734. DOI: 10.1155/2014/532734.
6. Wong RK, Drossman DA. How to diagnose irritable bowel syndrome and chronic constipation with Rome II criteria. *J Clin Gastroenterol*. 2001;33:7-13.
7. Mansour-Ghanaei F, Eshagh Hosseini S, Jafarshad R, et al. Prevalence and risk factors of functional constipation in an Iranian population. *Middle East J Dig Dis*. 2018;10:27-33.
8. Ijarotimi OA, Ijadunola KT, Esimai AO, et al. Prevalence and predictors of functional constipation in an African urban community. *BMC Gastroenterol*. 2017;17:7. DOI: 10.1186/s12876-016-0553-x
9. Mugie SM, Benninga MA, Di Lorenzo C. Epidemiology of constipation in children and adults: a systematic review. *Best Pract Res Clin Gastroenterol*. 2011;25:3-18. DOI:10.1016/j.bpg.2011.02.001
10. McCrea GL, Miaskowski C, Stotts NA, et al. Pathophysiology of constipation in the older adult. *World J Gastroenterol*. 2009;15:888-906. DOI:

10.3748/wjg.15.888

11. WHO. World report on ageing and health. World Health Organization; 2015.
12. United Nations. World population ageing. United Nations; 2017.
13. Akindele AO, Akinyemi JO, Salami BA. Functional constipation among adolescents in Southwest Nigeria. *Niger J Paediatr.* 2016;43:21-6.
14. Lawal A, Rotimi O, Solanke TF. Constipation in adult Nigerians: prevalence, perceptions, and predictors. *Afr Health Sci.* 2014;14:1026-34.
15. IBM Corp. (2013). IBM SPSS Statistics for Windows, Version 22.0. IBM Corp., Armonk, NY.
16. Rao SS, Go JT. Update on the management of constipation in the elderly: new treatment options. *Clin Interv Aging.* 2010;5:163-71. DOI:10.2147/cia.s8100
17. Pinto Sanchez MI, Bercik P, Verdu EF, et al. Biological markers in irritable bowel syndrome: to be or not to be? *Gut.* 2009;58:347-58.
18. Mearin F, Lacy BE, Chang L, et al. Bowel disorders. *Gastroenterology.* 2016;150:1393-407. DOI: 10.1053/j.gastro.2016.02.031
19. Diaz-Rubio M, Moreno-Elola-Olaso C, Rey E, et al. Symptoms in patients with irritable bowel syndrome in Spain: prevalence, severity, and healthcare seeking. *Dig Liver Dis.* 2003;35:580-5.
20. Rahman MM, Hossain MM, Islam MR. Functional constipation and associated factors in Bangladeshi elderly. *BMC Geriatr.* 2020;20:320.
21. National Bureau of Statistics (Nigeria). Demographic statistics bulletin. NBS; 2017.
22. Oladele DA, Oyinlola JO, Oyekale AS. Socio-demographic and cultural predictors of health-seeking behaviour among elderly in southwestern Nigeria. *Afr J Med Med Sci.* 2015;44:55-64.
23. Peppas G, Alexiou VG, Mourtzoukou E, et al. Epidemiology of constipation in Europe and Oceania: a systematic review. *BMC Gastroenterol.* 2008;8:5.
24. Wald A, Scarpignato C, Kamm MA, et al. The burden of constipation on quality of life: results of a multinational survey. *Aliment Pharmacol Ther.* 2007;26:227-36.
25. Bharucha AE, Pemberton JH, Locke GR. American Gastroenterological Association technical review on constipation. *Gastroenterology.* 2013;144:218-38.
26. Omolayo O, Adedeji OT, Fadare J, et al. Dietary patterns and gastrointestinal health among elderly Nigerians. *Niger Med J.* 2018;59:120-5.
27. Zhang M, Wu X, Li G, et al. Body mass index and functional constipation in adults: a meta-analysis. *Clin Gastroenterol Hepatol.* 2018;16:1043-51.
28. Eswaran S, Muir J, Chey WD. Fiber and functional gastrointestinal disorders. *Am J Gastroenterol.* 2013;108:718-27.
29. Hoebler C, Karinthi A, Devaux MF, et al. Physical and chemical transformations of cereal dietary fiber in the human colon. *Nutr Res Rev.* 1999;12:123-46.
30. Zhu L, Yang X, Liu J, et al. The association between fluid intake and functional constipation in Chinese adults. *Eur J Clin Nutr.* 2016;70:469-74.
31. Markland AD, Palsson O, Goode PS, et al. Association of low fluid intake with constipation in a population-based study. *Am J Gastroenterol.* 2013;108:755-64.
32. Lacy BE, Patel NK. Rome criteria and a diagnostic approach to irritable bowel syndrome. *J Clin Med.* 2017;6:99.
33. Slavin JL. Dietary fiber and body weight. *Nutrition.* 2005;21:411-8.
34. Brownlee IA. The physiological roles of dietary fibre. *Food Hydrocoll.* 2011;25:238-50.